Tuesday, June 4, 2019

Development of Microprocessor Based Automatic Gate

Development of littleprocessor Based Automatic GateABSTRACTIn this paper, we give detailed information about development of microprocessor based automatic entrance. In common gate operations many times troubles impart occur, victimisation microprocessor based automatic gate, we can completely remove these troubles easily. We atomic number 18 going to use this automatic gate in Automatic Car Parking. The automatic gate senses vehicle which they come near to it. It automatically opens, wait for a definite time, and closes after the time has passed. This constitution can also regularly check the enumerate of vehicle that entered the parklanding bea and calculate the available place limit of the area. The automatic gate developed in this paper is controlled by software, which can be modified any time whenever the governing body needs the change.Keywords automatic gate, microprocessor, automobile, traffic controllers.INTRODUCTIONNeed of automatic gate is rapidly increasing day by day. This system described the use of microprocessor as a controller. This automatic gate is nothing but the alternative of manual gate. Manual systems are costly, time consuming. Micro controlled gate areused in making sound system, Robot, automatic breaking system, etc.This automatic gate can be used in parking of residential home, organization, in public car parking. This system consists of an automatic remote control to open and close the door for parking. It opens the door only when the space is there.The automatic gate which is used here is not for security purpose. It is just developed to eliminate the problems which are faced by the older manual method. constitution OVERVIEWThe system presented here is microprocessor based automatic gate. Here microprocessor is used to control the sensing element which gives the information about space limit. This system opens, wait and closes door for car. And counts the phone number of car entered or exit. This system consists of tri gger rophy, sensor, CPU and memory module, uncover, gate and force supply whole. First sensor gives input signal to system. The sensor is visual when the car cross it then the signal is advanced otherwise it is LOW. Trigger is responsible for the HIGH and LOW signals. This trigger coverts the analog signal to digital. If the signal is HIGH then trigger radiates the signal to interface unit of measurement. Then the car enters the parking. If the signal is LOW then the car never enters to the parking area. Power supply unit supplies DC voltage for system.Block diagram of systemHARDWARE AND SOFTWARE DESIGNThe system design is divided into two partsHardware design. software system design.Hardware designSensor unitTrigger circuitCPU moduleMemory moduleDisplay unitGate control unitPower supply unit1. Sensor Unit-It is an optical sensor this is the light dependent register. This will change its resistance with intensity of light. In this system we use ORP12 it is called as dark re sistance of 10. When light ray are focused then resistance is low and if lights are disturbed, resistance will start increasing to dark resistance. Two pair of resister is used one for entrance gate and another for exit gate. Sensor unit send output to trigger circuit. When light ray focused output voltage is v01 and v02. And when light is getting interrupted then the voltage increases to 5v.2. Trigger Circuit-This is do up of trigger, two input NAND gate. This receives the output from sensor unit. If there is output from sensor unit then only trigger circuit go HIGH, otherwise it remains at LOW level.3. CPU Module-This provides system clock, reset and access to address data and control bus. Additional circuits are used which areClock circuit.Reset circuit.Clock circuit Crystal Oscillator is used to implement clock circuit. Cristal oscillator is more reliable for the high level output voltage. In this design the CPU which is used, has a clock cycle. Thus we use crystal oscillator a nd is pass through flip flop.Reset Circuit After the power is supplied this circuit initializes CPU if Halt occurs. If the CPU is reset the execution starts. It will clear the interrupt.4. Memory Module-In this module two techniques are used linear select and fully decoding technique. In linear select each bit select a device, can be done with small system. Doesnt need any decoding hardware, but it is time consuming. In fully decoding memory address is required to select memory device.Address decipherer It tells about space in memory to allocate the address pointed by microprocessor. In this combinational circuits are used. It can enable multiple inputs. When all enables are active then only decoder has active low outputs.5. Display Unit-Display unit uses the decimal and hexadecimal format for displaying purpose.Display unit consists of-Z80 PIO It provides 8-bit I/O port. It needs a driver to fed output to 7-segment display. Whenever a vehicle crosses the gate, this unit send sig nal to driver.BCD to 7 segment decoder For displaying decimal digit, decoder is used to take 4-bit BCD input.7-segment display6. Gate Control Unit-Gate control unit is made up of PNP and NPN transistorDiodesMotor.Transistors are used to control opening of gate through motor. There is time interval of 10 seconds between opening and closing of gate.Diodes are used to entertain transistor from reverse bias register to improve switching line.A DC Motor is used to control opening and closing of gate.7. Power cater Unit-Power supply unit designed is 5v DC and is doesnt change even if there is variation in AC voltage. Component of power supply unit is-Transformer 220 or 240 transformer.Diode converts AC current to DC.Filter Capacitor used to reduce ripple voltage.Regulator it receives DC input, and return it as the outputSoftware designSoftware design is referred as the coding. Here we have to program the system. Program modules areMain ProgramSensor processDelay SubroutineOutput Subro utineSteps involving in software designAlgorithmFlow ChartCodingAlgorithmSTART1. cnt1 = 0, cnt2 = 0, lim = 202. Read the sensor bit3. Compare sensor bit with entry code and exit code.a. If sensor bit = entry code then goto shade 5b. Elseif sensor bit = exit code then goto measuring stick 64. Go to step 25.a. Open, wait and closeb. Increment cnt1 and displayc. Go to step 76a.Open, wait and closeb. Increment cnt2 and display7. Subtract cnt2 from cnt18. Compare result with lima. If result = lim then step 9b. Else go to step 29. Fetch sensor bit10. Compare sensor bita. If status = exit code then step6b. Else raise alarm11. Goto step 9.CONCLUSIONBy this system with the help of microcontroller gate projects goal is achieved. The design can be applicable for any kind of system which needs sensor. In this system sensor plays the important part to this parking system. For effectiveness one should have the proper knowledge about the sensor, microprocessor, and assembly language.The sensor w orks effectively if operates in high intensity of light. This automatic gate can be used in organization public car park etc. and this system dont make for any security purpose.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.